
电池电动势的测定

一、实验目的

- 1、了解补偿法原理;掌握电势差计的使用;
- 2、测定下列三组电池的电动势:
- **A)** $Zn | ZnSO_4 (b = 0.1 \text{mol·kg}^{-1}) | | CuSO_4 (b = 0.1 \text{mol·kg}^{-1}) | Cu$
- B) $Zn \mid ZnSO_4$ ($b = 0.1 mol \cdot kg^{-1}$) | KCl (饱和), Hg₂Cl₂(s) | Hg
- C) $Hg \mid Hg_2Cl_2(s)$, $KCl(饱和) \mid |HCl(b = 0.1 mol \cdot kg^{-1})$, 氢醌 |Pt|

二、实验原理(补偿法原理)

电化学中关心的是可逆电池的电动势,因而要求测量过程中通过的电流无限小,补偿法就是通过在外电路上加上一个大小相等,方向相反的电势差与原电池相抗衡,达到测量回路中电流 $I \to 0$ 的目的.其线路示意图见图 1.

测电动势用的仪器称为电位差计,其主要部件为阻值精确且均匀电阻,(图 1 中的 AB 段).

测量时接通 K_2 ,即将待测电池 E_x 接入电路,然后移动接头,若移至 C 处时检流计 G 上显示电流 $I \rightarrow 0$ 则表明 AC 段上的压降等于待测电池 E_x 的电动势,由仪器可读出其电势差的数值.但电势差的数值不仅决定于电阻,而且与流经电路的电流大小有关,而仪器使用时实际的电流大小是不定的,这样对仪器刻度数值的可靠性就带来了问题.为此电位差计在测量 E_x 前必须对其读数进行校准 —— 仪器标准化.

进行仪器标准化时接通 K_1 ,即将标准电势差(E_s =1.0000V)接入电路,移动接头至 D 处,然后调节可变电阻 R 至检零指示 G 上显示电流 $I \rightarrow 0$,表明 AD 段上的压降等于标准电势差 E_s ,即仪器的标准化是调节电流,或者说是校正仪器读数.

三、仪器与试剂

- 3.1 仪器: SDC-II数字电位差综合测试仪; 甘汞电极, 铂电极, 铜电极, 锌电极各一支; 金相砂纸; U形玻璃管; 100 mL 烧杯 4 个
- 3.2 试剂 0.1 mol·kg⁻¹ CuSO₄; 0.1 mol·kg⁻¹ ZnSO₄; 0.1 mol·kg⁻¹ HCl; 饱和 KCl.; 琼脂.
- 4. 实验步骤
- **4.1** 制作盐桥: 取琼脂 **3** g, 饱和 **KCl 100 mL** 加热至完全溶解, 趁热将此溶液装入 U 形玻璃管中, 静置固化后即可使用.
- **4.2** 处理 Cu、Zn 电极: 先用金相砂纸除去电极表面的氧化物,用蒸馏水冲洗檫干,并用纸吸干备用。
- **4.3** 仪器标准化:
- (1) 打开仪器开关,将测量选择旋钮旋至"内标"
- (2) 调节电位旋钮至电位指示为: 1.00000 V
- (3) 按"采零"键至检零指示为: 0.000 V
- 4.4 测量电池电动势 E
- (1) 取 100mL 烧杯 2 个,分别装入半杯 0.1 mol·kg⁻¹ CuSO₄ 和 0.1 mol·kg⁻¹ ZnSO₄,分别插入 Cu 电极和 Zn 电极,中间架以盐桥,即构成铜—锌电池.
- (2) 将电池接入测量端
- (2) 将测量选择旋钮旋至"测量"
- (3) 由大到小依次调节电位旋钮至检零指示为0.000 时记录电位指示的读数即为待测电池的

电动势

- (4) 重复上述 4.3, 4.4 步骤,记录第二次数据
- (5) 更换电极重复以上操作测量另两个电池的电动势.

其中甘汞电极——KCl (饱和), Hg_2Cl_2 (s) $\mid Hg$, 将甘汞电极置于饱和 KCl 溶液中即可;

其中氢醌电极—— $HCl(b = 0.1 \text{ mol·kg}^{-1})$, 氢醌 |Pt, 将铂电极置于溶有少量氢醌的 $HCl(b = 0.1 \text{ mol·kg}^{-1})$

- **0.1 mol·kg**⁻¹)溶液中即可.
- ❖ 实验完毕拆除线路;将饱和甘汞电极放回饱和 KCl 溶液中保存;实验用 KCl 倒入回收瓶, 清洗电极和烧杯,整理仪器及桌面。
- 6.实验数据处理:
- 6.1 计算各电极的电极电势 E(电极).
- (1) 锌电极

$$E_{1} = E\left(\operatorname{Zn}^{2+}/\operatorname{Zn}\right) = E^{\theta}\left(\operatorname{Zn}^{2+}/\operatorname{Zn}\right) + \frac{RT}{2F}\ln a\left(\operatorname{Zn}^{2+}\right)$$
$$= E^{\theta}\left(\operatorname{Zn}^{2+}/\operatorname{Zn}\right) + \frac{RT}{2F}\ln \left(\gamma\left(\operatorname{Zn}^{2+}\right) \cdot \frac{b\left(\operatorname{Zn}^{2+}\right)}{b^{\theta}}\right)$$

(2) 铜电极

$$E_{2} = E\left(\operatorname{Cu}^{2+}/\operatorname{Cu}\right) = E^{\theta}\left(\operatorname{Cu}^{2+}/\operatorname{Cu}\right) + \frac{RT}{2F}\ln a\left(\operatorname{Cu}^{2+}\right)$$
$$= E^{\theta}\left(\operatorname{Cu}^{2+}/\operatorname{Cu}\right) + \frac{RT}{2F}\ln \left(\gamma\left(\operatorname{Cu}^{2+}\right) \cdot \frac{b\left(\operatorname{Cu}^{2+}\right)}{b^{\theta}}\right)$$

式中:
$$b^{\theta} = 1 \text{ mol} \cdot \text{kg}^{-1}$$

$$\gamma(Zn^{2+}) \approx \gamma(ZnSO_4) \not Z \gamma(Cu^{2+}) \approx \gamma(CuSO_4)$$

可查《物理化学》下册 P.16 表 7.4.1

(3) 甘汞电极

参见《物理化学》下册 P.35

$$E$$
(饱和甘汞) = (0.2410-7.6×10⁻⁴(t /°C-25)) V

(4) 醌氢醌电极

参见《物理化学》下册 P.36~37

$$E(\mathbf{Q}/\mathbf{H}_{2}\mathbf{Q}) = E^{\theta}(\mathbf{Q}/\mathbf{H}_{2}\mathbf{Q}) + \frac{RT}{F}\ln a(\mathbf{H}^{+})$$

$$= E^{\theta}(\mathbf{Q}/\mathbf{H}_{2}\mathbf{Q}) + \frac{RT}{F}\ln \left(\gamma(\mathbf{H}^{+}) \cdot \frac{b(\mathbf{H}^{+})}{b^{\theta}}\right)$$

$$= \mathbf{0.6993 V} + \frac{RT}{F}\ln \left(\gamma(\mathbf{H}^{+}) \cdot \frac{b(\mathbf{H}^{+})}{b^{\theta}}\right)$$

式中: γ(H⁺)≈γ(HCl) 可查《物理化学》下册 P.16 表 7.4.1

6.2 计算各电池的电动势: $E = E_{+} - E_{-}$

6.3 计算实验数据的相对误差

电 池	E _{实验} / V	$E_{ extit{ extit{ extit{a}}}\hat{ extit{e}}}/ ext{V}$	<i>∆E E _{理论}</i>
A			
В			
C			